Discussion on life-cycle assessments (LCA)

- What kind of methodologies for LCA and WTW are used?
- What are typical and expected net GHG effects of e-fuel production and utilization?
- What is the result of other sustainability evaluations related to air pollutant emissions and water consumption?

Technology Collaboration Programme on Advanced Motor Fuels

September 22, 2022 – Task 64

Life-cycle Analysis of Electro-fuels Using GREET

Uisung Lee and Michael Wang

Energy Systems Analyst Systems Assessment Center Argonne National Laboratory

Argonne has built comprehensive system assessment capability

CCUS Topics	Current Research
CO ₂ Capture & Compression	Process Modeling, TEA and LCA of CC technologies
CO ₂ Transport	CO ₂ pipeline transportation cost
CO ₂ Utilization	Process modeling, TEA and LCA of CO2U
H ₂ Production	H ₂ production technologies and market analysis TEA and LCA
H ₂ Transport	TEA and LCA of H_2 liquefaction, compression, delivery and fueling infrastructure
H ₂ Storage	TEA and LCA of H ₂ storage
Electricity Supply	TEA and LCA of electric power supply by technology and region
Water Resources	Regional water availability, footprint, and stress of CO_2U technology deployment

GREET is the gold standard life cycle analysis (LCA)

Greenhouse gases, Regulated Emissions, and Energy use in Technologies

- Tracks life cycle performance of energy and products
- Developed since 1995 with annual updates and expansions
- Long-term support from U.S. Department of Energy
- Expanded from transportation-focus to include a wide range of technologies

Federal, state, and international agencies use GREET

Technology Collaboration Programme on Advanced Motor Fuels

California Environmental Protection Agency

Environment and Climate Change Canada

E-fuel module is available in GREET

Our CCUS Life cycle analysis includes all the supply chains

Technology Collaboration Programme on Advanced Motor Fuels

• 2

Recently published paper on LCA framework of e-fuels

- Reviewed various LCA approaches available
- Suggested an incremental approach starting from CO₂ capture, which presents consistent results compared to existing substitution approach
- Considers carbon emissions from e-fuel production/combustion to be carbon neutral

Incremental approach for the life-cycle greenhouse gas analysis of carbon capture and utilization

Eunji Yoo^{*}, Uisung Lee, Guiyan Zang, Pingping Sun, Amgad Elgowainy, Michael Wang System Assessment Center, Bergy Systems and Infrastructure Analysis Division, Argonne Mational Laboratory, 9700 South Cass Avenue, Lemone, IL, 60439, USA

kiidee ikio							
oyundi: Dy, tillization De, yoliazation Re-cycle assessment remhone gas nadysis rethon intensity	Electro-fuels (e-fuels) are examples of carbon capture and utilization (CCD) hydrocarbon products that are derived from captured carbon diacds (CCD), while using renewable electricity as the energy feeddock. The environmental impacts of CCU products (e.g., e-fuels) are systematically quantified through life-cycle analysis (ICA). Freedoms studies evaluating ICA of e-fuels proposed frameworks with an expanded system boundary approach that included the entire angle/ chain of the production process generating the CO ₂ for CCU, in addition to the supply chains of the CCU product. This expanded system is channels are system paper proposes a simpler system boundary using an incremental proposal that can acalidate identical CI of the CCU product (e-fuel), while a rounding the extensive calculations in the expanded system boundary framework. The proposed incremental approach allocates the burders of the CO ₂ copturing process a the CO ₂ feeddock. The proposed incremental approach allocates the burders of the CO ₂ copturing process as the CO ₂ feeddock to the CCU products for CCO products for CO ₂ supplet to CCU process and thereing index to the CO ₂ copturing process and the ransportation to the CCU product of CO ₂ supplet to CCU process and beneficial for the CO ₂ copturing process and transportation to the CCU product for CO ₂ supplet to CCU process and beneficial for the CO ₂ copturing process and transportation to the CCU product of CO ₂ supplet to CCU process and beneficial for the CO ₃ copturing process and transportation to the CCU product of CO ₃ supplet to CCU process and beneficial for the CO ₃ copturing process and transportation to the CCU product of CO ₃ supplet to CCU process and beneficial for the CO ₃ copturing process and transportation to the CCU product of CO ₃ supplet to CCU process and beneficial for the CO ₃ and the the CO ₃ copture of CO ₃ cop						

(e) Incremental Approach

Yoo, E., Lee, U., Zang, G., Sun, P., Elgowainy, A., & Wang, M. (2022). Incremental approach for the life-cycle greenhouse gas analysis of carbon capture and utilization. Journal of CO2 Utilization, 65, 102212. https://doi.org/10.1016/j.jcou.2022.102212

CO₂ capture from various sources and CO₂ transportation

[MJ/MT-CO ₂]	Ethanol	Ammonia	NG process	Hydrogen	Cement	Iron/steel	NGCC power	Coal fired power	DAC
Electricity for CO ₂ capture	0	0	0	131	149	150	806	955	1,436
Natural gas for CO ₂ capture	0	0	0	4,218	4,208	4,227	0	0	6,750
Electricity for CO ₂ compression at the source	420	318	352	420	420	420	357	357	420
Electricity for CO ₂ pipeline transportation*	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	0.0

Low-temperature solid sorbent DAC is considered (high-temperature liquid solvent and cryogenic options are available)

* Transportation distance: 200 miles except for DAC (0 mile)

- Energy for CO₂ capture vary mainly due to CO₂ concentration.
- Electricity for onsite compression is calculated based on inlet/outlet pressure, compression ratio, the number of stages, and efficiency.
- Additional electricity for the booster pumps spacing 100 miles.

System boundary of a case producing CO₂-derived ethanol

Lee, U., R Hawkins, T., Yoo, E., Wang, M., Huang, Z., & Tao, L. (2021). Using waste CO2 from corn ethanol biorefineries for additional ethanol production: life-cycle analysis. Biofuels, Bioproducts and Biorefining, 15(2), 468-480.

Without renewable electricity and H₂, e-fuels have high carbon intensities

Lee, U., R Hawkins, T., Yoo, E., Wang, M., Huang, Z., & Tao, L. (2021). Using waste CO2 from corn ethanol biorefineries for additional ethanol production: life-cycle analysis. Biofuels, Bioproducts and Biorefining, 15(2), 468-480.

Renewable electricity and H₂ are key for low-carbon e-fuels

Lee, U., R Hawkins, T., Yoo, E., Wang, M., Huang, Z., & Tao, L. (2021). Using waste CO2 from corn ethanol biorefineries for additional ethanol production: life-cycle analysis. Biofuels, Bioproducts and Biorefining, 15(2), 468-480.

Life-cycle GHG emissions of Fischer-Tropsch fuels

• The e-FT fuels show significant GHG reduction benefit coupled with renewable H₂.

Life-cycle GHG emissions of synthetic methanol

• E-methanol can reduce GHG significantly using renewable H₂ compared to NGderived methanol.

Zang, G., Sun, P., Elgowainy, A., & Wang, M. (2021). Technoeconomic and life cycle analysis of synthetic methanol production from hydrogen and industrial byproduct CO2. Environmental Science & Technology, 55(8), 5248-5257.

Low-carbon e-fuel production needs renewable electricity

Most CO₂ sources in US have sufficient renewable electricity nearby

- In the Midwest, wind electricity would be mostly used to support CCU (due to solar PV's low capacity factors).
- Even with a regional/temporal mismatch, renewable electricity can be supported for CCU potentially through a power purchase agreement (PPA).

DO NOT CITE: Work In Progress

Wind potential

Water consumption for renewable H₂ production is significant

- E-fuel production requires freshwater as a renewable hydrogen source
- Significant regional/seasonal variations exist for water availability/scarcity in the U.S.
- Water scarce areas need to be avoided when locating CCU facilities

DO NOT CITE: Work In Progress

Need to consider seasonal/regional variation of water availability

Technology Collaboration Programme on Advanced Motor Fuels

DO NOT CITE:

Work In Progress

- Unless renewable H₂ can be economically sourced for CCU, supporting freshwater is important for on-site H₂ production using renewable electricity.
- For 2 BGY CO₂-derived fuel requires 10 BGY water for H₂ production*
- Water stress conditions can be used to limit siting CCU facilities (can use AWARE-US).

* 1 MJ CO₂-derived fuels require 1.6 MJ H2.
25.5 gal water consumption per mmBtu H2 production (GREET)

The research effort at Argonne National Laboratory was mainly supported by the **Bioenergy Technology Office (BETO)** and **Hydrogen and Fuel Cell Technologies Office (HFTO)** under the Office of Energy Efficiency and Renewable Energy of the US department of energy (DOE) under contract DE-AC02-06CH11357. The views and opinions expressed herein do not necessarily state or reflect those of the US government or any agency thereof. Neither the US government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

CONTACT Uisung Lee Email: ulee@anl.gov