Discussion on life-cycle assessments é‘j § oo v
(LCA)

» What kind of methodologies for LCA and WTW are used?
« What are typical and expected net GHG effects of e-fuel production and utilization?

* What is the result of other sustainability evaluations related to air pollutant emissions and water
consumption?
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Argonne has built comprehensive
system assessment capability
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Current Research

Process Modeling, TEA and
LCA of CC technologies

CO, pipeline transportation cost

Process modeling, TEA and LCA of CO2U

H, production technologies and market
analysis TEA and LCA

TEA and LCA of H, liquefaction,
compression, delivery and fueling
infrastructure

TEA and LCA of H, storage

TEA and LCA of electric power supply
by technology and region

Regional water availability, footprint, and
stress of CO,U technology deployment



GREET is the gold standard life f e
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cycle analysis (LCA)
Greenhouse gases, Regulated Emissions, and Energy use in Technologies

 Tracks life cycle performance
of energy and products

» Developed since 1995 with
annual updates and expansions

* Long-term support from

LE ANALYSI
U.S. Department of Energy CYC SIS MC

« Expanded from transportation-focus to
include a wide range of technologies

greet.es.anl.gov
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Federal, state, and international
agencies use GREET
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E-fuel module is available in GREET & oty cossorion o
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Our CCUS Life cycle analysis
Includes all the supply chains

CAPTURE, PURIFICATION,
€O, SOURCE COMPRESSION, AND TRANSPORTATION ACI RSO
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Recently published paper on
LCA framework of e-fuels

» Reviewed various LCA approaches available

« Suggested an incremental approach starting from
CO, capture, which presents consistent results
compared to existing substitution approach

« Considers carbon emissions from e-fuel
production/combustion to be carbon neutral

(e) Incremental Approach
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Incremental approach for the life-cycle greenhouse gas analysis of carbon %55
capture and utilization
Eunji Yoo U]sung Lee, Guiyan Zang, Pingping Sun, Amgad Elgowainy , Michael Wang
A Lamens, 1, 60479, LA

ARTICLE INFO ABSTRACT

Electro-fuels (e-fuels) are examples of carbon upm:e and un ]ualnn{CﬂJ) hydrocarbon products. that are

derived from captured carbon dioxi elects

enviranmental impacts of OCU products
{LCA). Previous studies evaluating LCA
o

0 the CCU plant. Thus, the €1 of CO; supplied to €CU process can be directly 1 ke vo e C1of . fued it

mem.n ‘canduct LCA of the preceding process that generates the CO; for CCU.

material Yoo, E., Lee, U., Zang, G., Sun, P., Elgowainy, A., & Wang, M. (2022). Incremental approach for the life-cycle greenhouse gas
analysis of carbon capture and utilization. Journal of CO2 Utilization, 65, 102212. https://doi.org/10.1016/j.jcou.2022.102212



CO, capture from various sources
and CO, transportation
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Electricity for CO, capture 0 0 0 131 149 150 806 955 1,436
Natural gas for CO, capture 0 0 0 4,218 4,208 4,227 0 0 6,750
Electricity for CO, compression at the source 420 318 352 420 420 420 357 357 420
Electricity for CO, pipeline transportation* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 0.0

P Low-temperature solid sorbent DAC is considered (high-temperature liquid solvent and cryogenic options are available)
* Transportation distance: 200 miles except for DAC (0 mile)

« Energy for CO, capture vary mainly due to CO, concentration.
« Electricity for onsite compression is calculated based on inlet/outlet pressure,

compression ratio, the number of stages, and efficiency.
 Additional electricity for the booster pumps spacing 100 miles.

Zang, G., Sun, P., Yoo, E., Elgowainy, A., Bafana, A., Lee, U., ... & Supekar, S. (2021). Synthetic Methanol/Fischer—Tropsch Fuel
Production Capacity, Cost, and Carbon Intensity Utilizing CO2 from Industrial and Power Plants in the United States.
Environmental Science & Technology, 55(11), 7595-7604.
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System boundary of a case o e
producing CO,-derived ethanol

System boundary of corn ethanol
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Lee, U., R Hawkins, T., Yoo, E., Wang, M., Huang, Z., & Tao, L. (2021). Using waste CO2 from corn ethanol biorefineries for
additional ethanol production: life-cycle analysis. Biofuels, Bioproducts and Biorefining, 15(2), 468-480.



Without renewable electricity and H,,
e-fuels have high carbon intensities
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Lee, U., R Hawkins, T., Yoo, E., Wang, M., Huang, Z., & Tao, L. (2021). Using waste CO2 from corn ethanol biorefineries for
additional ethanol production: life-cycle analysis. Biofuels, Bioproducts and Biorefining, 15(2), 468-480.
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Renewable electricity and H, are
key for low-carbon e-fuels
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Lee, U., R Hawkins, T., Yoo, E., Wang, M., Huang, Z., & Tao, L. (2021). Using waste CO2 from corn ethanol biorefineries for

additional ethanol production: life-cycle analysis. Biofuels, Bioproducts and Biorefining, 15(2), 468-480.
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Zang, G., Sun, P., Elgowainy, A., Bafana, A., & Wang, M. (2021). Life Cycle Analysis of Electrofuels: Fischer—Tropsch Fuel

Production from Hydrogen and Corn Ethanol Byproduct CO2. Environmental Science & Technology, 55(6), 3888-3897.
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Life-cycle GHG emissions of e S—
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synthetic methanol

« E-methanol can reduce GHG significantly using renewable H, compared to NG-
derived methanol.

Ammonia- NG
Gasoline BOB- petroleum
Methanol- NG
Diesel- petroleum
Gasoline E10- petroleum
E-methanol- nuclear H> and ammeonia CO=
E-methanol- solar/wind H: and ammonia CO:
E-methanol- renewable electricity and ammonia CO-

136.3

Ethanol- corn grain dry milling 54.9
E-methanol- nuclear H2 and ethanol CO:
E-methanol- solar/wind H: and ethanol CO:z I Reference

Methanol products
M Methanol-ethanol co-products
M Methanol-ammenia co-products

E-methanol- renewable electricity and ethanol CO-
E-methanol- nuclear H> and market CO=
E-methanol- solar/wind H- and market CO:
E-methanol- renewable electricity and market CO:

2.[} L 1 1 L

0 20 40 60 80 100 120 140 160
Cradle-to-grave GHG emissions (g CO,-eq./MT)

Zang, G., Sun, P., Elgowainy, A., & Wang, M. (2021). Technoeconomic and life cycle analysis of synthetic methanol production
from hydrogen and industrial byproduct CO2. Environmental Science & Technology, 55(8), 5248-5257.



Low-carbon e-fuel production ST

L %ep-% Advanced Motor Fuels
needs renewable electricity
Most CO, sources in US have sufficient renewable electricity nearby

* In the Midwest, wind electricity
would be mostly used to support

: g : wokmradus  ©CU (due to solar PV’s low
[ e R L T capacity factors).
pEE By S o nEt o it * Even with a regional/itemporal
' s==ud: 8957 1 mismatch, renewable electricity
can be supported for CCU
potentially through a power
purchase agreement (PPA).

) Sc%lar potent-ial o - DO NOT CITE:
® Wind potential Work In Progress

I [fvy.'l‘dlz




Water consumption for renewable H, [y T —
production is significant

sp-¥ Advanced Motor Fuels

 E-fuel production requires
freshwater as a renewable
hydrogen source

« Significant regional/seasonal
variations exist for water
availability/scarcity in the U.S.

* Water scarce areas need to be
avoided when locating CCU
facilities

DO NOT CITE:
Work In Progress



Need to consider seasonal/regional g ——

. . . - %6p-% Advanced Motor Fuels
variation of water availability

 Unless renewable H, can be
economically sourced for CCU,
supporting freshwater is important
for on-site H, production using
renewable electricity.

* For 2 BGY CO,-derived fuel
requires 10 BGY water for H,
production*

* Water stress conditions can be
Sa \ used to limit siting CCU facilities
e (can use AWARE-US).

*1 MJ CO,-derived fuels require 1.6 MJ H2.

DO NOT CITE:
25.5 gal water consumption per mmBtu H2 production (GREET) Work In Progress
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The research effort at Argonne National Laboratory was mainly supported by the Bioenergy Technology
Office (BETO) and Hydrogen and Fuel Cell Technologies Office (HFTO) under the Office of Energy
Efficiency and Renewable Energy of the US department of energy (DOE) under contract DE-AC02-
06CH11357. The views and opinions expressed herein do not necessarily state or reflect those of the US
government or any agency thereof. Neither the US government nor any agency thereof, nor any of their
employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights.

CONTACT
Uisung Lee
Email: ulee@anl.gov

Technology Collaboration Programme
by I2Q



