E-fuel Business Finland co-innovation project 21/09/2022 VTT - beyond the obvious VTT

fuel

BUSINESS

FINLAND

Challenge

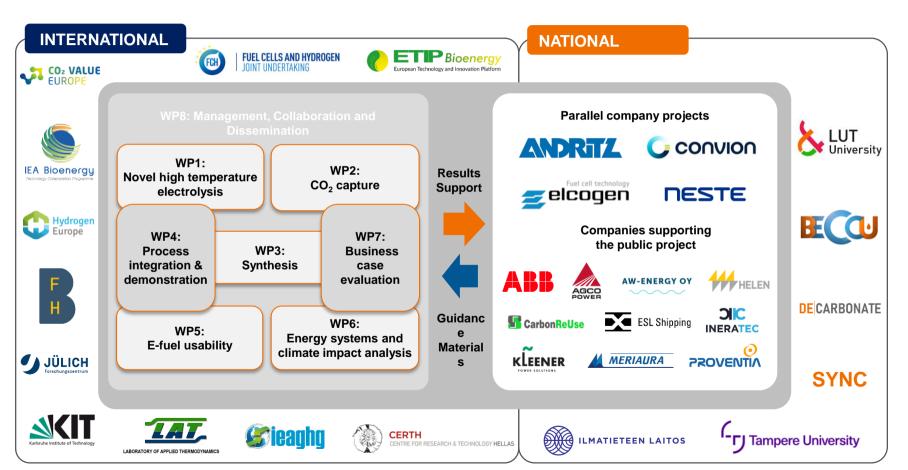
Efficient and profitable production of drop-in transportation fuels by Power-to-X

Our proposed solution

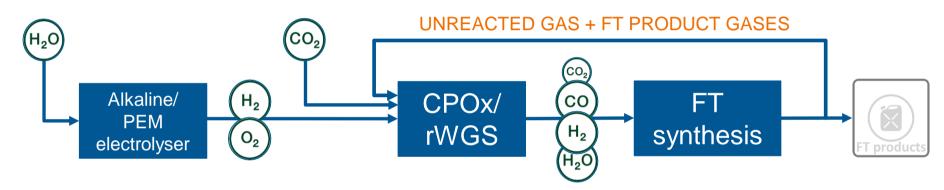
Combining of high temperature electrolysis and Fischer-Tropsch synthesis to obtain drop-in paraffinic fuels with high efficiency

Our vision

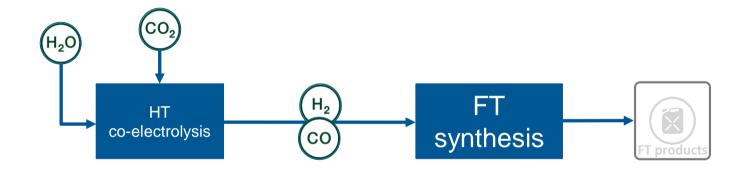
Year 2050, e-fuels will cover 20-30 % of final energy demand in transportation in Europe



The main objectives


- To demonstrate production of drop-in paraffinic e-fuels in bench scale with high efficiency by combining and integrating high temperature electrolysis and Fischer-Tropsch synthesis
- 2) A readiness to scale up the concept after 2-year project to a production scale of 10 kton/a

Project partners and collaborators



Approach 1 for hydrocarbons by P2X

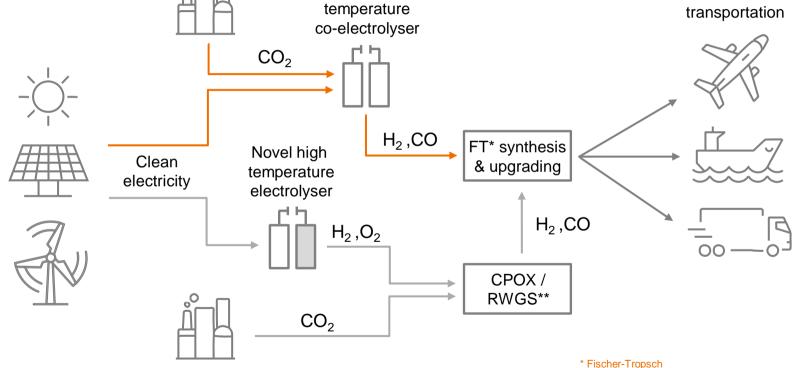
- Proprietary VTT catalyst technology for reverse water-gas shift and Fischer-Tropsch steps (cobalt catalysts for paraffins and iron catalysts for olefins)
- Efficient intensified reactor technology for FT

Approach 2 for hydrocarbons by P2X

- Proprietary VTT catalysts for Fischer-Tropsch step (cobalt catalysts for paraffins and iron catalysts for olefins)
- Efficient intensified reactor technology for FT

VTT mobile synthesis unit (MOBSU)

- MOBSU is a multipurpose synthesis unit for CO or CO₂ upgrading to energy carriers, fuels and chemicals
- Can be transported on-site where CO₂ emissions and energy are available



PRODUCTS

- Hydrocarbons (paraffins or olefins)
- Synthetic natural gas

- Reverse water-gas shift (RWGS) reactor technology: VTT
- Fischer-Tropsch (FT) reactor tehnology:
- Proprietary RWGS and FT catalysts:

Novel high

VTT

E-fuels for

**Catalytic partial oxidation / Reverse water-gas shift

E-fuel concept

°0

E-fuel demonstration – Integration of 3 units in industrial enivironment

VTT

CarbonReUse or Kleener CO₂ capture

E-fuel demonstration – schedule

		2022											2023								
Project/task	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9
SOEC pre-testing preparation																					
SOEC pre-testing																					
Full-demo preparation																					
Full-demo campaign																					

End-use research within the E-fuel project

The main research questions and our activities are:

- Will aliphatic e-diesel reduce engine-out exhaust emissions? The effect of blending aliphatic e-diesel with oxygenated diesel component oxymethylene ethers (OME)? Potential to form secondary aerosols in atmospheric reactions? Measurement campaign with AGCO 44HD Stage V engine in collaboration by VTT Technical Research Centre of Finland, Tampere University and Finnish Meteorological Institute.
- Will e-diesel improve durability and performance of diesel particulate filter (DPF)? Durability, loading and performance of DPF is studied with conventional diesel and e-fuel.
- How e-diesel performs in the field test with tractor? E-fuel will be in the field test by AGCO and emissions will be measured by PEMS system.

E-diesel blended with CH₃O(CH₂O)_nCH₃ oxymethylene ethers

Deyond the obvious

Juha Lehtonen juha.lehtonen@vtt.fi +358 504071075 @VTTFinland

www.vtt.fi