Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Energie BFE

Ostschweizer Fachhochschule

Liquefied Biomethane in HDV Transportation in Switzerland

The project "HelloLBG"

Prof. Dr. Elimar Frank, Zoe Stadler (IET), Fabian Ruoss (IET) IEA AMF Webinar, 20 October 2021

> CZ INSTITUT FÜR WISSEN ENERGIE UND ROHSTOFFE ZUG

Krummen Kerzers

The project HelloLBG

Core question: Under which conditions is the use of LBG for Swiss heavy-duty transport energetically, technically and economically reasonable?

- Technic.: Pilot operation of fuelling station / trucks

 (a) Energy / emissions measurements
 (b) Operation / procurement
- Energetic.: WTW-Analysis LBG (g CO_{2,eq} per MJ) (a) WTT (b) TTW
- Economic.: LBG-procurement, szenarios for producing LBG in Switzerland, cost comparison LBG with LNG and diesel, regulatory and political boundary conditions

Measurements truck fleet: Fuel consumption (VMS)

Measurements truck fleet: CO₂ emissions

Measurements truck fleet: Characteristics

UPCZ INSTITUT FÜR WISSEN ENERGIE UND ROHSTOFFE ZUG

Measurements truck fleet: Specific cycle

- PEMS measurements: CO_2 , CO, THC, CH_4 , NO_x , NO_2 and PN
- Logging of GPS data, OBD data and exhaust gas flow rate
- Truck incl. trailer 22.5 t (payload 15 t)
- RDE route (EU regulation 1151/2017): 95 km, appr. 2h15. Share highway < statutory truck emission measurements, but equivalent urban-, interurban and highway proportions.
- Total 12 measurements between 17.06.20 and 02.07.20 with same driver
- In addition, two warm start exhaust gas measurements with both LNG trucks (engine started warm, then idling for approx. 15 minutes).

Derz INSTITUT FÜR WISSEN ENERGIE UND ROHSTOFF

Measurements truck fleet: Specific Cycle

- Volvo LNG has the lowest CO2,eq emissions for all route segments
- Volvo LNG shows 10 to 20% lower CO2,eq emissions (average: minus 16%)
- Comparison NOx: Volvo LNG higher than diesel, but mainly at cold start and also still Euro VI compliant

Comparison Otto engine and HPDI (Tank-to-Wheel)

INSTITUT FÜR WISSEN ENERGIE UND ROHSTOFFE ZUG

Measurements fuelling station

Amount per fuelling

Measurements fuelling station

Pilot operation: Selected Lessons Learnt

Fuelling station:

- Empty as far as possible and fill regularly
- Avoid venting: high and uniform capacity utilization is crucial

Trucks

- No problems specific to LNG/LBG.
- Consumption/emissions: Efficient technology, minus 10 to 20% CO2,eq vs. diesel Euro VI

Methane emissionens (excluding ventings):

- No gas leaks at truck and filling station (incl. filling station filling)
- No significant gas leaks at the couplings during refueling operations

WTW analysis

Extension of the tool "Biograce"

.d	A	В	C	D	E	F	G H	I J	K L	M	0
	BIOGR Harm Biofr	ACE I nonised Calculations uel Greenhouse Gas	s of 5 Emissions in	Europe				w.biograce.net	Intelligent Energ	y Europe	
-	Production of LBG f	rom paper mill an	d fish farm w	aste ladante	d from produ	iction of F	Biogas from muni	icinal organic w	vaste as CNGI	Versio	n 4d for Testing
2	Overview Results	rom paper nun an		acto [adaptot	a nom produ		inguo inomi inami	ioipai organio i			
4	All results in	Non- allocated	Allocation	Allocated	Total	Actual/	Default values	Alloca	ation factors	Emission re	eduction
5	g CO Les I Mil 100	results	factor	results		Default	RED Annex V.D	2 Biogas	generation	Fossil fuel refere	nce (petrol)
6	Cultivation e ₈₀				0.0	A	0	100.0	v to CNG		95.1 g CO ₂ , "/MJ
7	1 Supply of substrates	0.00	100.0%	0.00				0.0	% to N-manure	GHG emission re	eduction
8	Processing e _p	8.0			8.0	A				8	2%
9 10	2 Biogas generation	5.68 0.81	100.0%	5.68							
ĬĨ _	4 CH4 liquefaction	0.87	100.0%	0.87							_
2	Transport e _{td}	8.8			8.8	A		Calcula	tions in this Excel s	heet	
3 4	5a Filling Tank Truck 5b Transport of LBG	0.65 4 43	100.0%	0.65							
15	6a Filling of Station	0.10	100.0%	0.10				C Strictly	follow the methodology a ves 2009/28/EC and 2009/3	as qiven in 10/EC	
16 17	6b Storing LBG (incl. Venting 7 Filling of LBG Truck	4.17	100.0%	4.17				tollow	JEC calculations by using	g GWP	
10		0.0	100.075	0.10	0.0			values	25 for CH4 and 298 for N2	10	
19	8Use (TTW)	0.0			0.0	<u> </u>		As explain	ed in "About" under "Incons	sistent use of GWP's"	
20	eoor + eoos	0.0	100.0%	0.0	0.0		0				
21	Totals	16.8			16.8						
22						_		_			
23											
24		Track cha			When using this	s GHG calculat	tion tool, the BioGrac	e calculation rules	s must be respecte	d.	
25	Calculation per phase The rules are included in the zip file in which you downloaded this tool. The rules are also available at www.BioGrace.net										
26	1 Supply of substrates				Quantity of p	product		Calculated emis	ssions		
27	Y	rield			Yield			Emissions per M	IJ CNG		
28 29 30 21	Organic waste 1 MJ 1.000 MJ/MJingt gCO2 gCH4 g N20 gCO2, g										
	limar Frank ! Hellol BG ! IFA AME Webinar 20 October 2021						WISSEN				

13 Elimar Frank | HelloLBG | IEA AMF Webinar, 20 October 2021

UPCZ INSTITUT FÜR WISSEN ENERGIE UND ROHSTOFFE ZUG

LBG from Norwegen

All results in	Non- allocated			
g CO _{2,eq} / MJ _{LBG}	results			
Cultivation e _{ec}				
1 Supply of substrates	0.00			
Processing e _p	8.0			
2 Biogas generation 3 CH4 extraction 4 CH4 liquefaction	5.68 0.81 0.87			
Transport e _{td}	8.8			
5a Filling Tank Truck 5b Transport of LBG 6a Filling of Station 6b Storing LBG (incl. Venting)	0.65 4.43 0.10 4.17			
7 Filling of LBG Truck	0.10			
Use e _u	0.0			
8 Use (TTW)				
e _{ccr} + e _{ccs}	0.0			
Totals	16.8			

- Plant for approx. 20 tpd
- -82% compared to fossile diesel (RED II: 95.1)
- Energy source Processing is crucial in this case (non-renewable: -46%)
- Processing and Transport in this assessment with roughly the same level of contributions
- Contribution "Transport & Storing" can be considerably lower:
 - Shorter distances and/or LBG
 - · Venting can be reduced or avoided

Example: Liquefaction (with 1.4 kWh_{el}/kg_{LBG})

4 CH ₄ liquefaction	via Mixed-Refrigerant Liquefaction		Quantity of product	Calculate	Calculated emissions			
	Yield			Emissions per MJ LBG				
	CH4	0.999 MJ_LBG / MJ_CH4	0.620 MJ_LBG/MJorganic waste, input 1.027 MJ LBG/MJCNG	g CO ₂	g CH ₄	g N ₂ O	g CO _{2, eq}	
	Factor from typical to default	1.0						
	Energy consumption	<u></u>		_	_		_	
=B61 if same for a	I ElecMixNorwayProduction	0.101 MJ / MJ _{CH4(f)}		0.52	0.00	0.00	0.52	
	Direct emissions				,			
	Methane	0.001 MJ / MJ _{CH4}			0.02		0.51	
			Res	ult	g CO _{2,eq} / MJ_l	LBG	1.03	

- Big difference from large scale to small (and nano) scale
 - Literature data often in CO2,eq/kg
 - Data in kWh/kg would be better, because: electricity origin can make a difference
- Nano-scale (< 20 tpd): Manufacturer specifications vary from 0.7 to 1.8 kWh_{el}/kg
 - Attention: Partly including, partly excluding pre-treatment

Example: Transport

 Further options (LBG from Northern Italy, distance 400km, no "direct emissions"): Reduction transport to 0.63 gCO_{2,eq}/MJ

INSTITUT FÜR WISSEN

ENERGIE UND ROHSTOFFE ZUG

Scenarios LBG production Switzerland

Costs upgrading / liquefaction

INSTITUT FÜR WISSEN ENERGIE UND ROHSTOFFE ZUG

Scenarios LBG production Switzerland

Costs biogas production

DST

First estimates for plants > 5 tpd

	Rappen pro kWh	CHF pro kg
Biogas production costs	10.0	1.39
Upgrading and liquefaction	2.0	0.28
Transport to fuelling station	0.4	0.06
TOTAL	12.4	1.73
Comparison LNG	8.0	1.15

- The decisive factor is the biogas costs, not upgrading/liquefaction
- Learning curves Upgrading and Liquefaction not yet considered

Scenarios LBG production Switzerland

Total emissions (720 Nm³/h biomethane)

ENERGIE UND ROHSTOFFE ZUG

HelloLBG

Comparison Otto engine and HPDI (Well-to-Wheel)

Thank you for your attention. elimar.frank@ost.ch

We would like to thank for the funding of the project by: Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Energie BFE

