June 20, 2023

The development of ammonia and methanol burning marine engines

German Weisser Winterthur Gas & Diesel Ltd

Presentation outline

1 Setting the stage

- 2 Low-speed engine DF technology state of the art
- 3 Development plans of low-speed engine developers
- 4 Fundamental experimental investigations

5 Summary

Setting the stage

AMF Task 60 (formerly Annex 60)

Purpose:

Assessment of fuel options that have emerged or significantly developed since the 2014 report (AMF Annex 41).

	IFO	LSFO	MGO/GTL/ BTL	HVO/SVO/ FAME	MeOH	DME/LPG	LNG/LBG	
Engine and fuel system cost	Drop in	Orop in	Drop in	Drop in	Dual fuel	Gas tank	Dual fuel Cryo tanks	
Projected fuel cost		Refining	Refining	Landuse		Infra- structure	infra structure	
Emission abatement cost	SDx, NOx, PM, COy	NOx, PM, CO;						
Safety related cost					Flash point	Ventilation	Press/temp	
Indirect cost				Ethics	Cargo space	Cargo space	Cargo space	
Serious impediment								
Signifficant cost								
Feasible solu	tion available							

Table 13. Summary of Evaluation of Propellant Systems

◆Intern. shipping, vessel-based ★Intern. shipping, voyage-based

Low-speed engine DF technology state of the art

Variants of dual-fuel engine concepts applied on two-stroke engines

The MAN ME-GI concept:

- Diesel-type combustion of a gas jet
- Injection pressure in the range of 150 to 315 bar, depending on engine load
- Ignition by means of pilot fuel via backup fuel system

Fuel varieties covered by the concept and derivatives:

- LNG, bio-methane, synthetic methane
- Ethane (ME-GIE)
- LPG (ME-LGIP)
- Methanol (ME-LGIM)
- VOC (LNG/VOC blends ME-GIE)

Illustration of ME-GI working principle (right) and gas injector (left) as key system feature, from L. Ryberg Juliussen et al, 2013, The MAN ME-GI

WINGD

Low-speed engine DF technology state of the art Variants of dual-fuel engine concepts applied on two-stroke engines

Illustration of WinGD X-DF working principle, from I. Nylund I., M. Ott, 2013, Development of a dual fuel technology for slow-speed engines, CIMAC The WinGD X-DF concept:

- Engine operating according to the Otto process
- Pre-mixed 'Lean burn' technology
- Low pressure gas admission at 'mid stroke'
- Ignition by pilot fuel in prechamber
- Combustion in main chamber initiated and enhanced by hot jets

Largely similar approach used on MAN ME-GA engines

Fuel varieties covered by the concept:

- LNG, bio-methane, synthetic methane
- VOC (LNG/VOC blends)

Development plans of low-speed engine developers Fuel applicability map - MAN ES

Fuel types	MC	ME-B	ME-C	ME-GI	ME-GA	ME-GIE	ME-LGIM	ME-LGIP
0-0.50% S VLSFO	Design	Design	Design	Design	Design	Design	Design	Design
HFO	Design	Design	Design	Design	Design	Design	Design	Design
Biofuels	Design	Design	Design	Design	Design	Design	Design	Design
LNG	-	~	Retrofit	Design	Design	Retrofit	Retrofit	Retrofit
LEG (Ethane)	-	-	Retrofit	Retrofit	14	Design	Retrofit	Retrofit
Methanol / Ethanol	-		Retrofit	Retrofit	10-1	Retrofit	Design	Retrofit
LPG	-	-	Retrofit	Retrofit	2.00	Retrofit	Retrofit	Design
Ammonia	-	-	Retrofit	Retrofit		Retrofit	Retrofit	Retrofit

Overview of fuel types and their applicability / retrofit ability on different engine design variants, from R. Bidstrup, 2021, MAN B&W Ammonia fueled engine development status, 42. Informationstagung zur Schiffsbetriebsforschung

Development plans of low-speed engine developers Fuel applicability map - WinGD

Fuel Type	Drop-in capable	X-engines	X-DF engines	
0 - 0.5%S VLSF0	n/a	Available	Available	
HFO	n/a	Available	Available	
Bio-diesel	✓	Available	Available	
LNG	n/a	Retrofit	Available	
Bio-methane	×	Retrofit	Available	
Synthetic methane	×	Retrofit	Available	
Ammonia	Dual- / Tri-Fuel	In Development	In Development	
Methanol/ Ethanol	Dual- / Tri-Fuel	In Development	In Development	
Lignin- derived biofuel	(✓)	Available	Available	

Overview of fuel types and their applicability / retrofit ability on different engine design variants, from D. Schneiter, S. Goranov, P. Krähenbühl, D. Schäpper, M. Spahni, G. Weisser, 2021, WinGD's X-act initiative: A holistic approach towards sustainable shipping, 18th Symposium, Sustainable Mobility, Transport and Power Generation*

Development plans of low-speed engine developers Fuel applicability map - JEng

Overview of fuel types and their application on different engine design variants, from K. IMANAKA, Y. KINOSHITA, K. EDO, The latest technological development of the J-ENG UE engine for zero emission and digital transformation, CIMAC 2023

Development plans of low-speed engine developers

Technological approach - JEng

Illustrations of envisaged operating principle, from K. IMANAKA, Y. KINOSHITA, K. EDO, The latest technological development of the J-ENG UE engine for zero emission and digital transformation, CIMAC 2023

Development plans of low-speed engine developers Schedule - MAN ES

2019	2020	2021	2022	2023	2024
Pre-study	Project kick-off	Engine concept R&D	Engine combustion and emission	Full scale engine test	1⁵t engine delivery to yard
 NH3 combustibility investigation. 	 4T50ME-X test engine received as platform for the Ammonia engine development. HAZID workshop on engine concept. Combustion chamber 1st evaluation. 	 Engine basic concept defined based on R&D and simulations. Ammonia fuel supply & Auxiliary systems specified and established in RCC. 	 1st engine confirmation at Research Centre Copenhagen (RCC). Specification of emission after- treatment done. 	 Full scale engine test at RCC evaluated for 1st commercial design. 	 Ammonia engine in engine programme. 1st ammonia fueled engine delivered to yard.

Two-stroke ammonia engine development schedule, retrieved from https://www.man-es.com/marine/strategic-expertise/future-fuels/ammonia (last accessed 20.6.2023)

Development plans of low-speed engine developers

Development plans of low-speed engine developers Schedule - JEng

JEng devlopment plans: Ammonia-fuelled ammonia gas carrier demonstration project, Illustration from press release retrieved from <u>https://www.i-eng.co.ip/en/news</u> (last accessed November 18, 2021)

Development plans of low-speed engine developers Investment into dedicated testing infrastructure - MAN ES

Figure 3. Photo of cylinder cover for ammonia tests mounted on the MAN B&W 4T50ME-X test engine in Copenhagen.

Photographs of new test engine, from Tradewinds (left, https://www.tradewindsnews.com/insight/first-ammonia-engines-for-commercial-use-are-due-out-in-2024/2-1-82472-10247

Development plans of low-speed engine developers

Investment into dedicated testing infrastructure - WinGD

Development plans of low-speed engine developers

Investment into dedicated testing infrastructure - JEng

Ammonia fueled test engine

Ammonia fuel supply facility

Installed at Mitsubishi Heavy Industries, Ltd. Research and Innovation Center (Nagasaki)

JEng ammonia testing infrastructure information retrieved from https://www.j-eng.co.jp/en/solution-technology/lsja_lsgh.html (last accessed 20.6.2023)

Fundamental experimental investigations

Activities in Switzerland as example

Review of earlier development at WinGD in the context of the Hercules-2 programme on the potential of methanol as a marine fuel

Initial investigation into combustion of ammonia at the University of Applied Sciences and Arts North Western Switzerland (featuring in various publications, e.g. K. Herrmann, S. Wüthrich, P. Süess, P. Cartier, R. de Moura, G. Weisser, Initial investigations into ammonia combustion at conditions relevant for marine engines, CIMAC 2023)

Perspective on methanol/ethanol as future fuels

Methanol / ethanol investigations in the context of Hercules-2

- Development of a fuel injection system with built-in flexibility for switching between ranging in energy content from ethanol to conventional fuels
- Test of the system on various testing platforms:
 - Injection test rig
 - Spray combuston chamber
 - RTX-6 lab engine

Perspective on methanol/ethanol as future fuels Methanol / ethanol investigations in the context of Hercules - 2

Selected results (Spray combustion chamber tests):

• Spray propagation and ignition behaviour of methanol and ethanol compared to Diesel

Perspective on methanol/ethanol as future fuels

Methanol / ethanol investigations in the context of Hercules - 2

Selected results (RTX-6 lab engine tests):

 Rate of heat release (ROHR) characteristics at full load (left) and bsfc / bsNO_X impact throughout load range (middle) and smoke emissions across the load range (right) when applying ethanol in combination with adapted combustion system features

Principle, specifications and features

Optical combustion chamber

p

Т

flow

- Optical access: 4 windows optical chamber
 ^S 60×20 mm
- Engine-like compression/combustion pressure / temperature \rightarrow up to 160 bar max. 240 bar / 700 ... >1000 K
- Variation of flow/turbulence by speed: u'≈ 3...6 m/s (300...1000 rpm)

Principle, specifications and features

Optical combustion chamber

- Engine-like compression/combustion pressure / temperature → up to 160 bar max. 240 bar / 700 ... >1000 K
- Variation of flow/turbulence by speed: u'≈ 3...6 m/s (300...1000 rpm)
- Flexible operation: mixture charge, injection parameter, timing, ...
- Variability to adapt test rig to a variety of DF combustion processes

prechamber jet

high pressure

gas injector

Characterization DF Combustion Processes

 $\mathbf{n}w$

Lean-premixed pilot fuel ignited dual-fuel combustion

Simultaneous Schlieren / OH* chemiluminescence

D. Humair, et al.: "Characterization of dualfuel combustion processes", 6th Rostock Large Engine Symposium 2020

Investigations

- → Ignition delay (location):
- → Flame propagation:
- → Heat release/cyclic stability: pressure measurements

OH* chemiluminescence

Schlieren

n w

Experimental setup / operation parameter variation

Simultaneous Schlieren / OH* chemiluminescence

- Gaseous NH₃/air charge —
- Pilot fuel ignition (dodecane)
- Operation parameter variation:
 - > air/fuel ratio
 - ▶ pressure
 - > temperature
 - ➤ flow conditions
 - ➤ start/duration of injection

NH₃ combustion characteristics

- \rightarrow Ignition delay (location):
- \rightarrow Flame propagation:

- OH* chemiluminescence Schlieren
- \rightarrow Heat release/cyclic stability: pressure measurements

Variation of air/fuel ratio λ (mixture charge)

p_{comp} = 70 bar / T ≈ 810 K / SOI = -10 deg / ET = 500 μs

 $\lambda = 2.0$

Initial NH₃ Combustion Tests

Pre-Chamber reactive jet

p_compr = 70 / 100 bar T_gas = 50°C / 100°C Variation of: λ , SOI (spark plug), λ _pre-chamber

Initial NH₃ Combustion Tests

SOI = -10°CA 70 bar, 50°C

 $\mathbf{n}w$

The fuel mix has evolved considerably already since the 2014 AMF report release

The development of dual-fuel technology acts as an enabler for the adoption of fuels beyond the traditional liquid fossil fuels

DF engines developed for LNG-fuelled applications are already today capable of using renewable methane from either synthesis or biogenic sources

Engine developers have started extensive programs in order to be able to deliver products to the market that can operate safely and efficiently on renewable methanol and ammonia

First methanol engines are already in operation, the rollout to a larger portfolio as well as the development of new products for methanol and ammonia follows an ambitious schedule

Thank you!

GASLOG WALES

EB 1

M

WING

