

Life-Cycle Analysis for Advanced Marine Fuels

Farhad Masum

Argonne National Laboratory June 20, 2023

\$1.15 billion-dollar budget

employees, including 1,800 researchers and 500 students

Argonne by the numbers:

6,000 researchers supported by 6 DOE-SC and DOE-NE user facilities

5 national research centers led by Argonne

World-leading research at scale in suburban Chicago

locations: Chicago suburbs, City of Chicago, and Washington, D.C.

Life Cycle Assessment (LCA)

- LCA is a major step to holistically evaluate sustainability of technologies and policies
 - LCA thinking has helped changes in corporation and consumer behaviors
- Recent trends of LCA applications
 - US domestic regulations and programs
 - Regulations such as the CA LCFS (and several other states) and EPA RFS
 - The Inflation Reduction Act incentives for clean hydrogen, sustainable aviation fuels, and clean fuels are based on LCA **GHG** results
 - International activities
 - International Civil Aviation Organization's CORSIA program
 - International Marine Organization's discussion of potential low-GHG fuel standard
 - EU Renewable Fuel Directive
 - Canadian Clean Fuel Standard
 - Brazilian RenovaBio program

https://pre-sustainability.com/articles/life-cycle-assessment-lca-basics

GREET sustainability metrics include energy use, criteria pollutants, greenhouse gases, and water consumption

Energy use

- Total energy: fossil energy and renewable energy
- Fossil energy: petroleum, natural gas, and coal
- Renewable energy: biomass, nuclear energy, hydro-power, wind power, and solar energy

Air pollutants

- VOC, CO, NOx, PM₁₀, PM_{2.5}, and SOx
- Estimated separately for total and urban (a subset of the total) emissions

Greenhouse gases

- CO₂, CH₄, N₂O, black carbon, and albedo
- CO_{2e} of the five (combined with their global warming potentials)

Water consumption

 Addressing water supply and demand (energy-water nexus)

Informing Policies and Regulations

- CA-GREET is an adaptation of Argonne's GREET model
- Oregon Clean Fuels Program also uses an adaptation of Argonne's GREET model
- U.S. EPA uses GREET with other sources for Renewable Fuels Standard pathway evaluations
- National Highway Traffic Safety Administration for fuel economy regulation
- Federal Aviation Administration and International Civil Aviation Organization using GREET to evaluate aviation fuel pathways
- USDRIVE Well-to-Wheels Report
- U.S. Maritime Administration renewable marine energy options for IMO GHG intensity and sulfur limits
- U.S. Dept. of Agriculture bioenergy LCA and carbon intensity of farming practices
- **Canadian Clean Fuel Standard** for Environment and Climate Change Canada fuel pathways
- LCA results for use in different provisions of the 2021 **Bipartisan Infrastructure Law** and the 2022 **Inflation Reduction Act**

GREET Scope - All Transportation Sectors

^{*} Share of transportation GHG emissions in the US (and globally in 2019), remaining 12% for US is from pipelines and offroad (EIA, IEA). GREET also includes LCA of industry sectors, buildings, and plastics.

GREET Marine Models

- GREET Marine Model and New Stand-Alone Marine Module
 - Marine Fuel Pathways incl. Fossil, Renewable, Fossil/Biomass Blends
 - Relevant Environmental Metrics incl. GHGs, Energy-use, CAPs, Water-use
 - Standardization enables apples-to-apples comparison across fuel and technology pathways, and capacity to 'drill-down' on the LCA results
- Functional Units
 - Energy-Based (Impacts per unit MJ)
 - Service-Based (Impacts per Trip, Tonne-Km)
- Key Variables
 - Fuel and Engine Types
 - Trip and Vessel Characteristics
 - Emissions Regulations

Consistent System Boundary Across Fuel Pathways

- Compare on an apples-to-apples basis
- Avoid burden shifting across supply chain segments
- Identify key drivers

ENERGY U.S. Departs

Screen across potential environmental impacts

Publicly-Available LCA Models: GREET 2022

Comparison across range of marine fuel pathways

CFP: Catalytic Fast Pyrolysis; ZSM5: Zeolite Socony Mobil-5; TiO2: Titanium Dioxide; PF: Fast Pyrolysis; HTL: Hydrothermal Liquefaction; HT: Hydrotreating; LFG: Landfill Gas; SVO: Straight Vegetable Oil; LFO: Lignin Ethanol Oil; MGO: Marine Gas Oil; MDO: Marine Distillate Oil; HFO: Heavy Fuel Oil; LNG: Liquefied Natural Gas; FT: Fischer-Tropsch; S; Suffur; T&D: Transportation and Distribution; WHH: Well-to-Hull

Life cycle of fuels from petroleum and natural gas

- All direct activities and emissions in the above flowcharts are included
- Land disturbance of oil/NG recovery was assessed and included in GREET (up to 2 g/MJ)
- Methane leakage of the NG supply chain is based on combined bottom-up (EPA GHG Inventory) and top-down (individual studies) approach

Biofuel Pathways

Detailed modeling of feedstocks and conversion

LCA of Alternative Marine Fuel Options

Includes Multiple LCA Metrics:

- GHGs by type
- Criteria air pollutants
- Energy use
- Water consumption

Leverages existing GREET pathways and builds new ones:

- Conventional heavy fuel oil, marine distillate oil, and marine gas oil
- Fischer-Tropsch distillate
- Pyrolysis oil
- Renewable Diesel
- Biodiesel

% of Max. by Category

% of Max. by Category

LCA of Alternative Marine Fuel Options

Marine Bio-Oil Pathways

ENERGY U.S. Department of Energy laboratory in a U.S. Department of Energy laborator managed by U.Chicago Acquires, LLC

Argonne 📤 75

Marine Bio-Oils: Life Cycle GHG Emissions

CFP: Catalytic Fast Pyrolysis; ZSM5: Zeolite Socony Mobil-5; TiO2: Titanium Dioxide; FP: Fast Pyrolysis; **HTL**: Hydrothermal Liquefaction; HT: Hydrotreating; LFG: Landfill Gas; T&D: Transportation and Distribution; **WTH**: Well-to-Hull

Marine Bio-Oils: Life Cycle SOx Emissions

CFP: Catalytic Fast Pyrolysis; ZSM5: Zeolite Socony Mobil-5; TiO2: Titanium Dioxide; FP: Fast Pyrolysis; **HTL**: Hydrothermal Liquefaction; HT: Hydrotreating; LFG: Landfill Gas; T&D: Transportation and Distribution; **WTH**: Well-to-Hull

Marine Bio-Oils: Marginal Carbon Abatement Cost

CFP: Catalytic Fast Pyrolysis; ZSM5: Zeolite Socony Mobil-5; TiO2: Titanium Dioxide; FP: Fast Pyrolysis; **HTL**: Hydrothermal Liquefaction; HT: Hydrotreating; LFG: Landfill Gas; T&D: Transportation and Distribution; **WTH**: Well-to-Hull

Marine Bio-Oils: Life Cycle GHG Emissions

Methanol Pathways

LNG: Liquefied Natural Gas; FOG: Fats, Oils, and Grease; IDL: Indirect Liquefaction; DME: Dimethyl Ether; RNG:
Renewable Natural Gas

AMMONIA PATHWAYS

Ammonia: Life Cycle GHG Emissions Natural Gas Hydrogen from Coal gasification with CCS Nitrogen NG-SMR with CCS (process) ■ Hydrogen Hydrogen from Poplar Gasification RNG NG-SMR with CCS ■ Flectricity Hydrogen from Nuclear, PEM ■ Material & Chemicals Hydrogen from Nuclear, SOEC Process Emissions & Water Hydrogen from Solar/ Wind, PEM Consumption Hydrogen from Solar/ Wind, AWE 5.3 Combustion RNG from FOG CCS RNG from Sludge Counterfactual RNG from Waste □ Displacement RNG from Manure 0.55 ◇ WTH

Draft: Do not cite

CCS: Carbon Capture and Storage; SMR: Steam Methane Reforming; PEM: Polymer electrolyte membrane; SOEC: Solid Oxide Electrolyzer Cell; RNG: Renewable Natural Gas; FOG: Fats, Oils, and Grease

-50

Life cycle GHG emissions, g CO20 MJ-1

100

150

200 - - 70% reduction

-250 -200 -150 -100

Marine Module Default Fuel Consumption per Trip

- Trip Fuel Consumption (MJ or J/MT-km):
 - Vessel Type: Bulk Carrier, Tanker, and Container Ship
 - Vessel Operations: Distance, Speed*, Time, Engine Load Factor, and Fuel^
 - Main and Aux. Engine Power Ratings
 - Energy Conversion Efficiency
 - Main propulsion: SSD, MSD, Steam Turbine (ST), or Gas Turbine (GT)
 - · Aux. engines: MSD or HSD
 - Region: Pacific, Atlantic, Gulf of Mexico, or Great Lakes
 - Travel: Foreign vs. Domestic
 - Trip: Cruise, RSZ, and Hotel

Fuel consumption used for emissions calculations

- * Slow steaming assumed.
- ^ Fuel can be selected for each portion of trip.

Additional Lifecycle Considerations

- Changes to routine maintenance schedule (and material consumption) with alternative fuels:
 - Oil change interval
 - Other
 - How much effect on fuel consumption and emissions?
- Additional inputs to engine, fueling system, emissions control, etc.?
- Fugitive emissions (leaks, purging, etc.)

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicage Argonne, LLC.

GREET Marine Module: Trip Dashboard

GREET Marine Module: Fuel Comparison

