

Carbon Capture on board a ship

June 20, 2023 • Nicole Wermuth / Igor Sauperl / Andreas Wimmer

Agenda

- Pre-combustion carbon capture
 - → EU Horizon2020 project "HyMethShip"
- Post-combustion carbon capture
 - → FVV-project "CCS on Ships"

Agenda

- Pre-combustion carbon capture
 - → EU Horizon2020 project "HyMethShip"
- Post-combustion carbon capture
 - → FVV-project "CCS on Ships"

LARGE ENGINES COMPETENCE CENTER © LEC GmbH

Clean Cluster Denmark • 2023-06-20 • Slide 3

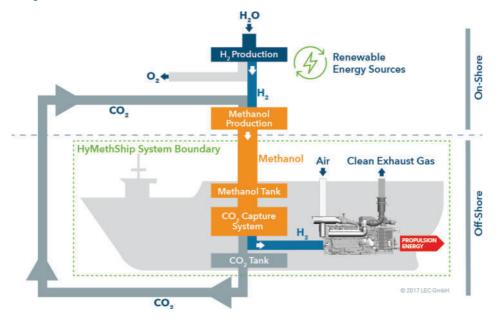
The Goals & Path

HyMethShip Project

- Funded from the European Union's Horizon 2020 research and innovation program under grant agreement No 768945
- > Emissions reduction goals
 - 90+ % reduction in CO₂ emissions
 - Elimination of SO_x and PM emissions
 - IMO Tier III NO_x emission levels w/o after treatment
 - Investigation of hydrogen dual fuel combustion concepts
- > Case study ship design
- > Full-scale system demonstration
- > Life cycle assessment for costs and env. impact

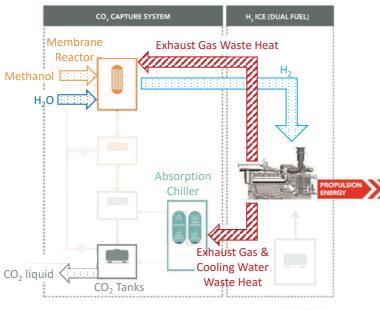
Project Consortium:

6 countries, 13 organizations



LARGE ENGINES COMPETENCE CENTER $\,$ © LEC GmbH

Clean Cluster Denmark • 2023-06-20 • Slide 5

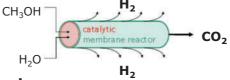

The Concept

On-board Setup

Pre-combustion carbon capture system

- · Receiving liquid methanol & water
- Producing hydrogen fuel using waste heat
- Liquefying CO2 w. cooling driven by waste heat
- Feeding liquid CO2 to tanks

Propulsion engine


- Consuming hydrogen fuel
 - Methanol used as back-up fuel
- Supplying waste heat for reformation and carbon capture

Exhaust gas temperature > 400 °C!

LARGE ENGINES COMPETENCE CENTER © LEC GmbH

Clean Cluster Denmark • 2023-06-20 • Slide 7

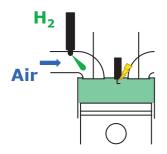
Methanol Reformer

Two processes in the same reactor:

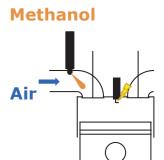
- Catalytic methanol reforming $(CH_3OH + H_2O \rightarrow CO_2 + 3H_2)$
- o H₂ separation via membrane permeation

Ceramic-based carbon membrane technology

- Free of precious metals
- Reaction pressures up to 50 bar
- o H₂ pressures 10-20 bar
- Low risk of poisoning (e.g. from CO)
- Membrane tubes stacked together working in parallel in pressure vessel



Dual-Fuel Engine – H₂ or MeOH operation

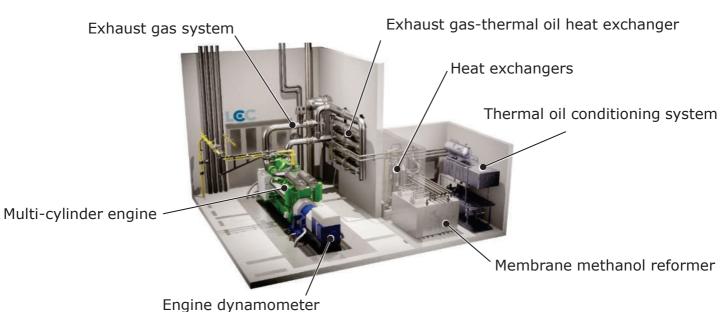


Standard operation

Hydrogen combustion – medium pressure port fuel injection & spark ignition.

Redundancy / back-up operation

Methanol combustion - spark ignition system for hydrogen as well as for methanol combustion. Reduced emissions, no diesel fuel systems required



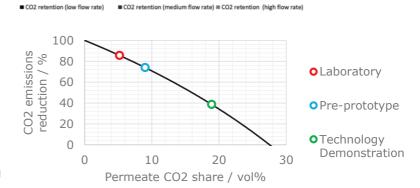
LARGE ENGINES COMPETENCE CENTER © LEC GmbH

Clean Cluster Denmark • 2023-06-20 • Slide 9

Technology demonstration

Membrane separation performance

LCC

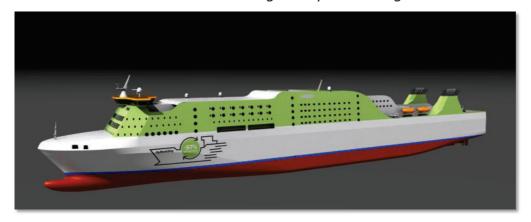

Membrane performance in laboratory environment at IKTS

- Hydrogen purity in permeate stream > 90 %
- CO₂ retention in retentate > 95 %

90 90 80 70 60 90 40 30 20 15 10 Transmembrane pressure [bar]

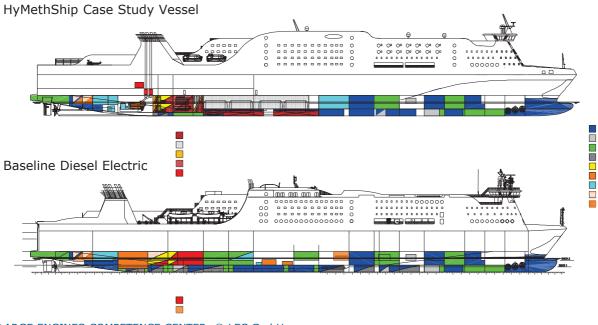
Membrane performance in reformer environment shows lower selectivity than in laboratory environment

- Operating conditions under investigation
- Next generation membrane technology in development

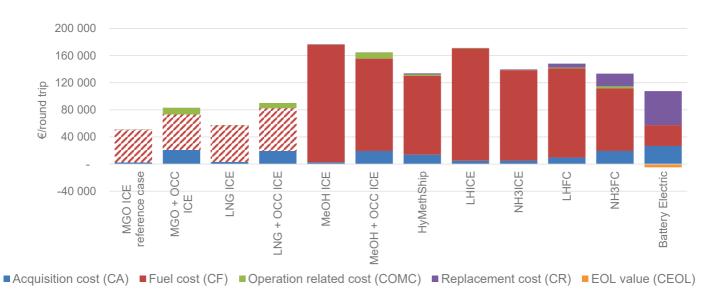

LARGE ENGINES COMPETENCE CENTER $\,$ © LEC GmbH $\,$

Clean Cluster Denmark • 2023-06-20 • Slide 13

Case Study Vessel


- RoPax ferry with fixed operating route Gothenburg-Kiel: 236 nautical miles one way
- Electrical generation power 4 x 5 MW (+2.3 MW emergency generator)
- Propulsion power ≈ 18 MW
- Vessel model for detailed design of system integration and use in HazId/HazOp

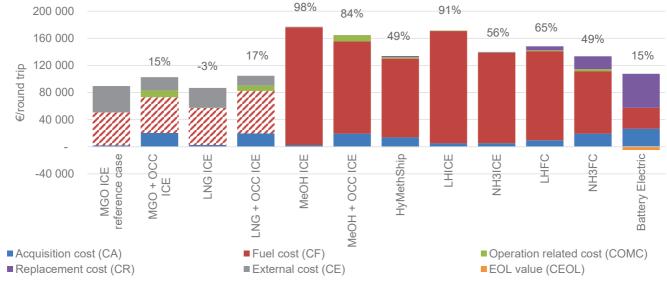
Placement of main systems - comparison



LARGE ENGINES COMPETENCE CENTER © LEC GmbH

Clean Cluster Denmark • 2023-06-20 • Slide 15

Life cycle cost of low carbon options



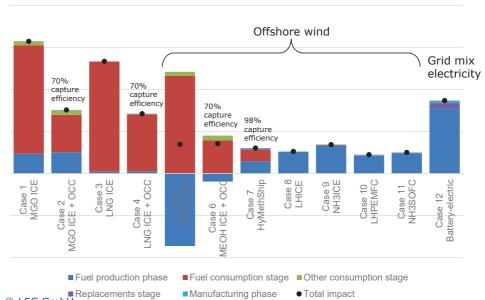
Source: Kanchiralla et al. (2021)

Life cycle cost of low carbon options

Example of the impact of a carbon tax of 150 Euro/tonne CO₂

Source: Kanchiralla et al. (2021)

LARGE ENGINES COMPETENCE CENTER © LEC GmbH


Clean Cluster Denmark • 2023-06-20 • Slide 18

Life cycle climate impact Global warming potential 100-year time perspective

Source: Kanchiralla et al. (work in progress)

- The HyMethShip system reduced climate impact with about 80% in a life cycle perspective
- Climate impact in the same order of magnitude as hydrogen and ammonia propulsion systems

The Wrap-up of HMS

High H₂ / CO₂ selectivity of membranes Full scale engine operation with 100 % hydrogen Onshore system demonstration complete

© LEC GmbH

LARGE ENGINES COMPETENCE CENTER © LEC GmbH

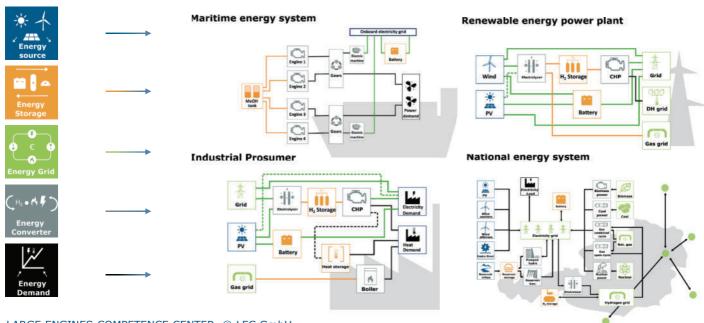
Clean Cluster Denmark • 2023-06-20 • Slide 20

Agenda

- Pre-combustion carbon capture
 - → EU Horizon2020 project "HyMethShip"
- Post-combustion carbon capture
 - → FVV-project "CCS on Ships"

LEC ENERsim

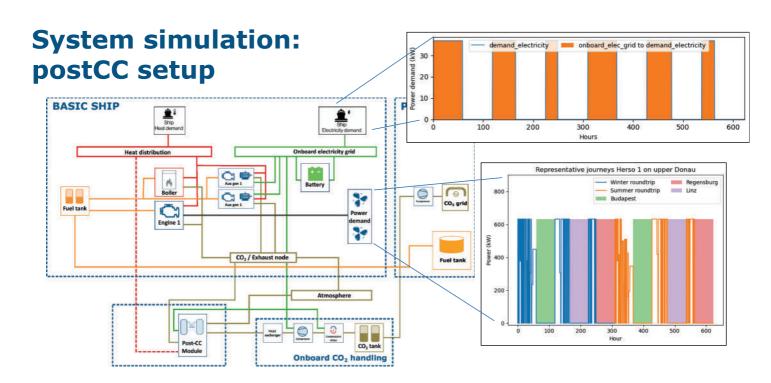
A versatile simulation platform for the optimization of sustainable energy systems



LARGE ENGINES COMPETENCE CENTER $\,$ © LEC GmbH $\,$

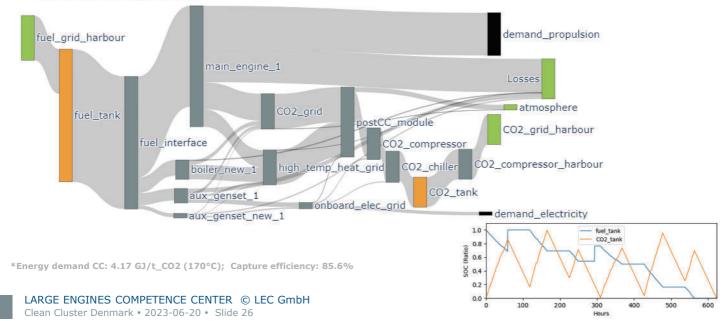
Clean Cluster Denmark • 2023-06-20 • Slide 22

LEC ENERsim application examples

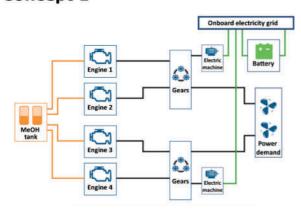


LARGE ENGINES COMPETENCE CENTER $\,$ © LEC GmbH $\,$

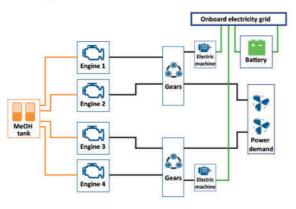
LEC ENERsim example: ship systems

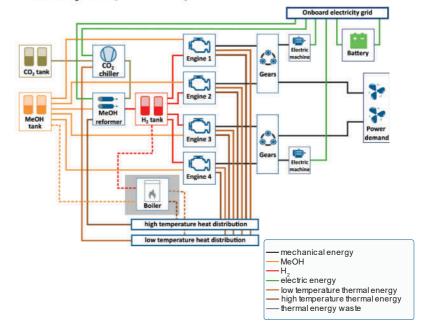


System simulation: postCC setup


ENERsim Energy Flows

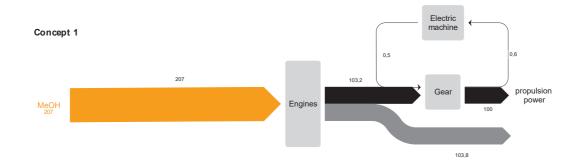
LEC ENERsim | Propulsion Concept 1


Concept 1


LEC ENERsim | Propulsion Concept 1, 2 & 3

Concept 1

Concept 2 / Concept 3

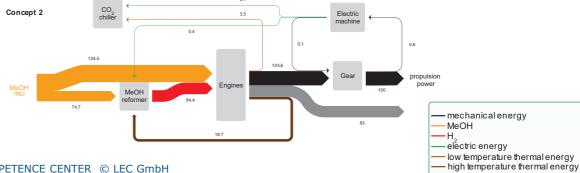


LARGE ENGINES COMPETENCE CENTER © LEC GmbH

Clean Cluster Denmark • 2023-06-20 • Slide 28

Energy Flows | Concept 1 @ 100 % load





mechanical energy
 MeOH
 H₂
 electric energy
 low temperature thermal energy
 high temperature thermal energy
 thermal energy waste

Energy Flows | Concept 1 & 2 @ 100 % load

LARGE ENGINES COMPETENCE CENTER © LEC GmbH

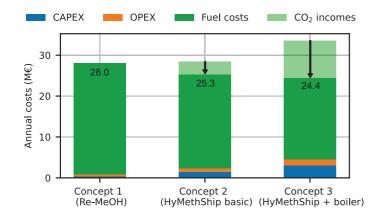
Clean Cluster Denmark • 2023-06-20 • Slide 30

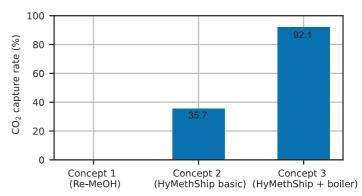
Energy Flows | Concept 2 & 3 @ 100 % load

mechanical energy

low temperature thermal energy

MeOH


thermal energy waste



Clean Cluster Denmark • 2023-06-20 • Slide 31

Concept Comparison | Annual Costs & CO₂ Capture Rates

LARGE ENGINES COMPETENCE CENTER $\,$ © LEC GmbH

Clean Cluster Denmark • 2023-06-20 • Slide 32

Summary

Carbon capture on board a ship is feasible with pre-combustion and post-combustion concepts

Application of simulation platform LEC ENERsim to ship propulsion concept

Post-combustion: Assessment in progress

Pre-combustion: Cost advantage of pre-combustion carbon capture over pure methanol propulsion; integration of an additional boiler significantly improves carbon capture rates and further decreases annual net costs

LARGE ENGINES COMPETENCE CENTER © LEC GmbH

© LEC GmbH

CONTACT:

Dr.-Ing. Nicole Wermuth • Email: nicole.wermuth@lec.tugraz.at

LEC GmbH • Inffeldgasse 19 • A-8010 Graz, Austria • Phone: +43 (316) 873-30101 • Fax: +43 (316) 873-30087 • www.lec.at

Thank you for your attention!

Federal Ministry
Republic of Austria
Consets Active, Environment
Energy, Rodinistry,
Republic of Austria
Conset Active, Environment
Energy, Rodinistry,
Republic of Austria
Energy, Rodinistry
Energy of Energ

